2(x^2)+4(x^2+3)-2=22

Simple and best practice solution for 2(x^2)+4(x^2+3)-2=22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2)+4(x^2+3)-2=22 equation:



2(x^2)+4(x^2+3)-2=22
We move all terms to the left:
2(x^2)+4(x^2+3)-2-(22)=0
We add all the numbers together, and all the variables
2x^2+4(x^2+3)-24=0
We multiply parentheses
2x^2+4x^2+12-24=0
We add all the numbers together, and all the variables
6x^2-12=0
a = 6; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·6·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*6}=\frac{0-12\sqrt{2}}{12} =-\frac{12\sqrt{2}}{12} =-\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*6}=\frac{0+12\sqrt{2}}{12} =\frac{12\sqrt{2}}{12} =\sqrt{2} $

See similar equations:

| 8(4k-4-(-5k-32)=0 | | -6(5-5x)=300 | | 4n+5=47 | | 5a−5=7a−19 | | 81=3k | | 7v-13=2(v+1) | | 2y-5=y+12 | | 2x+(x+8)=180 | | 1.5x+x=1 | | 2x+(x+8)=18 | | 8-2x∧2=-82 | | 7(x-7)=2x-44 | | d^2–2d–15=0 | | 5x+6=7x+26 | | d2–2d–15=0 | | 8=-4x+7x+2 | | -10+5x-3x=-10 | | -6x-10+5x=-8 | | 15-a=6 | | 6+66=x | | 3-3.6k=4.2 | | (k+2)7*3=159 | | 2x+8+5x=78 | | 5t^2-15t+1=9 | | 4m/7m=21 | | -7+5x=-52 | | 5×+2y=98 | | 16t^2-113t=74 | | 2(3x-2)+4(x+3)=3(4-2x) | | 2(v+5)-4v=-8 | | 1x+4=16 | | -5w+2(w-2)=-19 |

Equations solver categories